

Eever since Elecon's inception 48 years ago, they have strived to reach new frontiers of technical excellence. From a modest start in manufacturing material handling equipment namely ELEVATORS & CONVEYORS in 1951, Elecon graduated to the manufacture of gear boxes (initially for captive use) in 1963. Today, Elecon's name become synonymous with high quality gear and material handling equipment in India.

Elecon had set up a separate Gear Division in 1976. This division has a capacity of producing more than 25,000 gear unit yearly, out of which 90% share for worm speed reduction gear units and remaining share in helical speed reduction gear unit. The gear units are working satisfactorily in cement, chemical, plastic, paper, power generation, sugar, textile, thermal plant industries.

Elecon have a wide range of worm, parallel shaft and right angle helical – spiral bevel speed reduction gear units.

Elecon have many firsts to their credit. In the eighties, they were the first to introduce case-hardened and ground gear technology in India and the modular design concept for gear manufacture in India, as a result of which economical mass production and comprehensive maintenance of component stocks were made possible.

The latest additions to their production line are planetary gear boxes for marine and other applications which have already been delivered for use on the off-shore patrol vessels of the Indian Coast Guard. These are very compact, high precision gear boxes, capable of transmitting up to 23,000 KW of power.

For a forward-looking organisation like Elecon, modernisation is the watchword. That is precisely why they continuously update their production technology through frequent capital and infrastructural investments. Elecon have geared themselves for tomorrow by setting up one of the largest EDP centres in the Indian Engineering Industry. More than 85% of their machinery is computer controlled, ensuring a high degree of precision in the manufacture, design and testing of gear components. Apart from a large concentration of computerised numerically controlled (CNC) machines, they have flexible machining systems, a battery of modern quality control equipments for checking gear component's various parameters and geometry, on-line computerised inventory control, production planning and execution programmes. All this has resulted in Elecon's Gear Division being the most modern in the country – a fact that is unanimously acknowledged throughout the industry. Just as it is acknowledged by clients that Elecon, despite their stature and focus on modernisation, have not lost sight of their primary goal - customer satisfaction.

ISO - 9001 for Elecon Gear Division

In November 1994, the RW – TUV Germany has accredited that Elecon Gear Division Quality Management System confirms to the internationally accepted ISO 9001 standards. This certificate covers Quality Assurance in Design and Development, Production, Installation and Service of mechanical transmission products like Worm, Helical and special gear units, Fluid , Geared and Flexible couplings and Accessories.

WORM REDUCTION GEAR UNIT IN THE RANGE

Worm speed reduction gear unit is the result of more than thirty years of continuous efforts in development and refinement by ELECON ENGINEERING CO., the India's most experienced organisation in gear transmission engineering.

* MODEL & TYPE : HEAVY DUTY GEAR UNITS - SFU, SFO, SFV, SSM (SUPER SERIES)

Underdriven (SFU)

Overdriven (SFO)

Vertical output shaft up/down (SFV)

Hollow output shaft (SSM)

SIZES : 12, 14, 17

RATIO: Min. 5:1 to Max. 70:1

Power capacity to 350 KW

SFU

SFO SFV

SSM

SUPER SERIES IN WORM GEAR UNITS

SPECIFICATIONS

GENERAL

Elecon single reduction gear units are the result of many years of experience. Completely re-designed gear case with liberal ribbing increases heat dissipating area, streamlined sump carrying more oil and larger capacity of fan enhance the thermal rating of the gearbox. All this means that the continuous load carrying capacity is increased without substantial rise in temperature.

No more opening of gearbox for hand changing, just replace the fan and fancowl from one end to other end of worm shaft.

DESIGN STANDARDS

Wherever applicable, British as well as Indian standards are used. Worm conforms to casehardening alloy steel, worm wheel conforms to phosphor-bronze PB2-C as per British Standard B.S. 1400, while gear case conforms to C. I. grade FG 220 and for heavy duty FG 250, Indian Standard I.S. 210.

GEAR CASE

Gear case is of streamlined design, rugged in construction, made of close-grain cast iron. It is completely oil-tight, dust-proof and capable of being installed in the open without a separate cover. The faces and bores are accurately bored and machined on latest precision machines to ensure perfect alignment and interchangeability.

WORM/WORM WHEEL

The worm is made of case-hardening alloy steel, carburised, ground and polished and is integral with the shaft. Bearing journals are accurately ground. Worm wheel is made of centrifuglly cast phosphor-bronze rims, shrink fitted and brazed with C.I. centres.

Worms are generated on special-purpose worm milling machines, gas carburised and ground on automatic work grinders.

Worm wheels are hobbed on precision hobbing machines with high accuracy hobs. Each and every wheel is checked to match with the master worms to ensure complete interchangeability.

Right-hand threads are provided, unless otherwise specified.

BEARINGS

The worms and worm wheels are supported on ball or roller anti-friction bearings of ample margin of safety to allow adequate journal as well as thrust loads. Overhung loads arising out of sprocket or pinion drive are generally permissible because the gear case and bearings are

designed for this duty. However, complete details should be given to us for confirmation. In cases of heavy overhung loads, an extra roller bearing can be provided.

WHEEL SHAFT

The wheel shaft is made of high tensile carbon steel. It is of large diameter to carry the torsional as well as bending loads which may be induced by overhung drives.

LUBRICATION

Lubrication to gears and bearings is by splash of oil from the sump. Thus, no special care is required except for the occasional topping up of the oil to the required level. A large oil filler-cum-breather and inspection cover is provided together with a drain plug and ventilator. Neoprene lip-type oil seals are fitted on input and output shaft.

For very low input speed below 50 rpm. and heavy loads in sizes larger than 14" size forced lubrication is required. In such cases Elecon must be consulted.

COOLING

Air cooling is effected by means of standard polypropylene or metal fans which direct a continuous flow of air over the ribbed surface of the gear unit. The fan is designed to operate in both direction of rotation, and is so arranged in conjunction with the ribbing on the gear unit as to allow maximum heat dissipation.

HOLDBACK

Elecon Sprag type holdback can be fitted on all sizes of gears to prevent reverse rotation. In cases where holdback is requied, the direction of rotation of the shaft should be mentioned.

POWER RATINGS

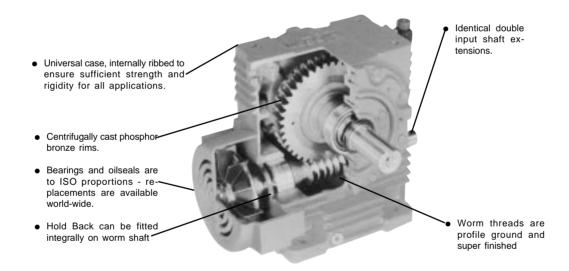
The ratings indicated in the catalogue holds good for 12 hours of continuous running under uniform load being driven by electric motor. They give minimum gear life of 26,000 hours, subject to limitation of maximum oil temperature of 100°C under full load, 20°C ambient.

OVERLOADS

All the components of the reduction gears are so designed that they can withstand.

- * 100 per cent overload for 15 seconds
- * 50 per cent overload for one minute
- * 40 per cent overload for 30 minutes and
- 25 per cent overload for two hours.

Super NU Series MODULAR WORM GEAR UNIVERSAL MOUNTING


Further to successful launching of ELECON 'NU' Modular worm gearboxes, "SUPER NU" series is one step ahead in WORM GEAR TECHNOLOGY.

A combination of present-day concepts, analytical calculations with the help of CAD (Computer Aided Design) carried out on single part use of very latest CNC machine tools plus systematic checks on materials and workmanship, give this series of gearboxes a marked degree of reliability.

Single piece universal casing having flanges top and bottom side and also provision for a supporting flange make it possible to have the universal mounting positions for gearboxes such as underdriven, overdriven and vertical. The internal components are, therefore, interchangeable for all the mounting positions.

Quick change of mounting positions from underdriven to overdriven and vice versa merely by putting the unit upside down and replacing the positions of drain plug, breather plug and oil level indicator.

Comprehensive maintenance of stock and faster delivery can be achieved due to adoption of interchangeably principle. Robust compact and streamlined design with ample thermal capacities.

FILL AND FORGET Concept

The low and medium power gearunit sizes $1\frac{5}{8}$, $1\frac{3}{4}$, 2, $2\frac{1}{4}$ and 3 are supplied with factory filled SYNTHETIC LUBRICANT and require no lubricant maintenance. User has not to fill any grade of lubricant.

Change or shaft handling

This is achieved easily and quickly by just replacing the cap from one end of the worm shaft only in the case of $1\frac{5}{8}$, $1\frac{3}{4}$, 2, $2\frac{1}{4}$ and 3 SNU gear units. It is not necessary to dismantle the complete gear unit. While in 4 SNU onwards, just replace the fan and fancowl from one end to other end of the worm shaft.

TABLE NO. 1 LOAD CLASSIFICATION BY APPLICATIONS

Driven Machine	Type of Load	Driven Machine	Type of Load
Agitators & mixers		Reciprocating	Н
Pure Liquids, semi-liquids	U	Screw	М
Liquids and solids variable density	М	Food Industry	
Liquids with variable density	М	Beef slicer	М
Blowers		Cereal cooker	U
Centrifugal, vane	U	Laundry machines	
Lobe	М	Washers, tumblers	М
Brewing & distilling		Line shaft	М
Bottle machinery	U	Mills	
Brew kettle continuous duty	U	Hammers	Н
Cookers, scale hopper	М	Ball kilns, pebbles	М
(frequent starts)		Rod tumbling barrels	Н
Cane filling Machinery	U	Cement kilns	М
Cane knives	М	Dryers and coolers	М
Clarifiers•	U	Mixers	
Classifiers	U	Concrete mixers	М
Clay-working machinery		Sugar industry	
brick press, briquette machine	Н	Cane knives	M *
Pug mill, clay-working machinery	М	Crushers	M *
Compressors		Mills	H *
Centrifugal	U	Oil industry	
Lobe	М	Chillers	М
Reciprocating multi-cylinder	М	Rotary kilns	М
Reciprocating single-cylinder	Н	Paper mill	
Conveyors - Uniformly loaded or fed		Bleacher conveyor press, winder	
Apron, Belt, Bucket, Screw	U	Calendars, agitators, beater and pulper	М
Conveyors - Heavy Duty - Not Uniform	ly fed	Pumps	
Apron, Belt, Bucket, Screw	М	Centrifugal	U
Reciprocating and shaker	М	Reciprocating (three or more cylinders)	М
Cranes		Gear, lobe type	U
Main Hoist	М	Rubber & plastic industry	
Bridge Travel	*	Crackers	H *
Crushers		Fixing mills	H *
Ore, Stone	Н	Laboratory equipment	М
Sugar	М	Refiners	M *
Elevators		Sheeters	M *
Bucket-uniform load	U	Tubers and strainers	M *
Bucket-heavy load	М	Warming mills	M *
Bucket-continuous load	U	Tyre and Tube press	M *
Centrifugal discharge	U	Sand Mullers	М
Gravity discharge	U	Screens	
Passenger lifts	*	Air washing	U
Fans		Rotary-stone / gravel	М
Centrifugal	U	Textile industry	
Induced draft	М	Batches	М
Large (mine, industrial, etc.)	М	Calendars	М
Light (small diameter)	U	Dyeing machinery	М
Cooling Towers	Н	Spinners	М
Induced draft	*	Washers	М
forced draft	*	Winders	М
Feeders		Wire-drawing, Flattening machine	М
Apron	М	Wire Winding machine	М
Belt	М	* Should be selected on the basis of 24	4 hours / dav
Disc.	U	service only & consult Elecon.	a.o , day

ENQUIRY

- Type of prime mover, KW rating, speed R.P.M. Required reduction ratio & Handing.
- Type of driven machine, actual power required, designed speed R.P.M., peak and shock (give magnitude and duration where possible).
- Type of drive employed between
 - Prime mover and reducer.
 - Reducer and driven machine

- No. of hours / day the gear unit will be in operation.
- Ambient conditions, i.e., temperature, humidity.

 Whether holdback required ? Specify direction of rotation, if holdback is to be fitted.
- Details of any external loads imposed on gear unit.
- Give sketch of available space.

Explanation and use of ratings and service factors.

Gear unit selection is made by comparing actual loads with catalogue ratings. Catalogue ratings are based on a standard set of loading conditions whereas actual load conditions vary according to type of application. Service factors are therefore used to calculate an equivalent load to compare with catalogue ratings.

★ Mechanical ratings and service factor (F_M)

Mechanical ratings measure capacity in terms of life and/or strength assuming 12 hr/day continuous running under uniform load conditions.

Catalogue ratings allow 100% overload at starting, breaking or momentarily during operations up to 12 hours per day.

TABLE NO.2 Mechanical service factor (F_{M})

Prime mover	Duration of service hrs per day	Load classi Uniform	fication - driv Moderate Shock	en machine Heavy Shock
Electinc motor, steam lurbine or hydraulic motor		0.80 1.00 1.25	1.00 1.25 1.50	1.50 1.75 2.00
Multi-cylinder internal, combustion engine	Under : 3	1.00	1.25	1.75
	3 to 10	1.25	1.50	2.00
	Over 10 to 24	1.50	1.75	2.25
Single cylinder internal combustion engine	Under : 3	1.25	1.50	2.00
	3 to 10	1.50	1.75	2.25
	Over 10 to 24	1.75	2.00	2.50

 For Units subject to frequent starts/stops and overloads, also applications where high inertia loads are involved e.g. crane travel drives, slewing motion etc. consult Elecon.

★ Thermal ratings and Thermal service factor (F_T)

Thermal ratings measure a unit's ability to dissipate heat, if they are not exceeded, the lubricant may overheat and break down resulting in failure of gear unit.

Thermal ratings are affected by ambient temperature and not by mechanical considerations such as increased running time and shock loads.

Catalogue ratings are given on 20°C ambient temperature allowing for a lubricant temperature rise to 100°C during operation as the unit transmit power and generate heat.

Thermal ratings calculated with unit fan cooling.

Thermal service factor F_T (Table No. 3) is used to modify the actual load according to prevailing ambient temperature.

TABLE NO. 3 THERMAL SERVICE FACTOR (F_T)

Ambient Temp °C	10	20	30	40	50	60
Factor	0.87	1.00	1.16	1.35	1.62	1.97

If the ambient temperature is other than 20°C, divide the catalogue thermal rating by the factor from Table No. 3

EXAMPLE - 1

Worm reduction gear having input (worm) above the wheel required for belt conveyor where non-uniform material is fed on conveyor belt, operating for 8 hours per day. Speed required at conveyor shaft is 50 rpm. The gear unit is driven directly using coupling by 7.5 KW, 1500 rpm electric motor.

SOLUTION

STEP: 1 Ratio required = $\frac{\text{Input speed}}{\text{Output speed}} = \frac{1500}{50} = 30$:

STEP: 2 From Table No.1

Drive m/c - Belt conveyor

Material - Non uniform fed

Type of Load - Moderate shock (M)

∴ From Table No.2

Mechanical service factor (Fm) = 1.25 for 8 hr/day operation

STEP : 3 Input power = Motor Power x Fm

= 7.5 x 1.25 = 9.375 KW

: From catalogue - Rating at Input 1500 rpm, Ratio - 30:1

Gear unit size : 6 Ratio - 30:1 Input Power = 12.2 KW

:. Gear unit type/size : 6 SNU-O, Ratio - 30:1

EXAMPLE - 2

Worm reduction gear unit underdriven type is required to drive a bucket elevator heavily loaded, operating 24 hours per day at 29 rpm, transmitting 30 KW. The gear unit is directly driven using coupling by 1500 rpm of an electric motor. The ambient temperature is around 30°C on plant.

SOLUTION:

STEP: 1 Ratio required = $\frac{\text{Input speed}}{\text{Output speed}} = \frac{1500}{29} = 51.7:1$

Nearest standard ratio available is 50:1

STEP: 2 From Table No. 1

Driven m/c - Bucket Elevator (Heavily Loaded)

Type of Load - Moderate shock (M),

From Table No. 2

Mechanical service factor (Fm) = 1.50 for 24 running hrs/day continuous

STEP: 3 Equivalent output power (Mechanical) = 30 x 1.5 = 45 KW

∴ Equivalent output torque (Mechanical) = $\frac{9550 \times 45}{29}$ = 14818.96 Nm From catalogue.

Refer rating at input speed 1500 rpm, Ratio - 50:1

: Gear unit size 14, ratio 50:1 having output torque (Mechanical) = 16457.4 Nm Input power (Mechanical) = 62 KW

STEP : 4 From Table No. 3 Thermal service factor (Ft) = 1.16

For an ambient temp. of 30°C

∴ Equivalent output power (Thermal) = 30 KW x 1.16

= 34.8 KW

∴ Equivalent output torque (Thermal) = $\frac{9550 \times 34.8}{29}$ = 11460 Nm.

STEP: 5 From catalogue, rating at input 1500 rpm Ratio - 50:1, for 14 size

Output torque (Thermal) = 10486.9 Nm, which is less than calculated equivalent

Output torque (Thermal) = 11460 Nm

- : Higher gear unit size 17 SFU, Ratio 50:1 is to be selected where at input 1500 rpm Where, Output torque (Mechanical) = 29064 Nm and Input power (Mechanical) = 110 KW
- .. Required Input power
 - Calculated equivalent output torque (Mech.) x Rated power (Mech.)

Rated output torque (Mech.) x Fm

$$= \frac{14818.96 \times 110}{29064 \times 1.5} = 37.39 \text{ KW}$$

.. Nearest standard motor having 37 KW at 1500 rpm can be selected for the application.

EXAMPLE - 3

Worm reduction gear (underdriven type) required to drive a clay-working machine for continuous 10 hours/day. The power required at clay-working machine is 5 KW at 50 rpm, ambient temperature is 40°C. Also suggest an electric motor power at 1500 rpm to drive the gear unit.

SOLUTION:

 $=\frac{1500}{50}=30:1$ STEP: 1 Ratio required = Output speed

STEP: 2 From Table No.1

Driven m/c - Clay-working machinery, Type of Load - Moderate shock (M),

.. From Table No.2

Mechanical service factor (Fm) = 1.25 for 10 running hrs/day continuous

.. From Table No.3

Thermal service factor (Ft) = 1.35 at 40°C ambient temp.

.. The higher of the above two service factor i.e. 1.35 is to be considered as a service factor.

STEP: 3 Equivalent output power = 5 KW x 1.35 = 6.75 KW

$$\therefore \text{ Equivalent output torque} = \frac{9550 \times 6.75}{50} = 1289.25 \text{ Nm}$$

STEP: 4 From catalogue, Refer rating at Input speed 1500 rpm, Ratio - 30:1

Gear unfit size 6 SNU-U, Ratio 50:1 having

Input power = 12.2 KW

Output torque = 1980.7 Nm

STEP: 5 Required Input power

> Calculated equivalent output torque x Rated input power Rated output torque x Service factor

$$= \frac{1289.25 \times 12.2}{1980.7 \times 1.35} = 5.88 \text{ KW}$$

: Suggest nearest standard A.C. electric motor having 7.5 KW at 1500 rpm to drive gear unit size 6 SNU-U, Ratio 30:1.

ELECON 🕸

RATINGS AT INPUT SPEED 1500 R.P.M.

GEAR	OUTPUT	CAPACITY		SIZE (OF UNIT	
RATIO	SPEED R.P.M.	CAPACITY	10	12	14	17
5	300	INPUT MECH. POWER (KW)	123	196.3	274.3	*
		OUTPUT MECH. TORQUE (Nm)	3700.0	5493.6	8224.7	*
		INPUT THERMAL POWER (KW)	90	119.4	162	*
		OUTPUT THERMAL TORQUE (Nm)	2707.7	3776.85	4857	*
7.5	200	INPUT MECH. POWER (KW)	92	128	184	*
		OUTPUT MECH. TORQ;UE (Nm)	4129.4	5699.61	8279.6	*
		INPUT THERMAL POWER (KW)	76	108.6	150	*
		OUTPUT THERMAL TORQUE (Nm)	3411.3	4806.9	6674.7	*
10	150	INPUT MECH. POWER (KW)	65	110.5	162.4	320
		OUTPUT MECH. TORQUE (Nm)	3807.3	6557	9635.4	19354.6
		INPUT THERMAL POWER (KW)	62	98.7	141	200
		OUTPUT THERMAL TORQUE (Nm)	3631.5	6164.6	8358.1	12224
15	100	INPUT MECH. POWER (KW)	58	81	150	249
		OUTPUT MECH. TORQUE (Nm)	4985.1	7131.87	13349.4	21877
		INPUT THERMAL POWER (KW)	56	76	110	177
		OUTPUT THERMAL TORQUE (Nm)	4813.2	6670.8	9790.8	15720.5
20	75	INPUT MECH. POWER (KW)	55	75	123	216
		OUTPUT MECH. TORQUE (Nm)	6303.3	8619	14288.3	25028.6
		INPUT THERMAL POWER (KW)	48	63	94.3	160
		OUTPUT THERMAL TORQUE (Nm)	5500.8	7239.8	10954.8	18366
25	60	INPUT MECH. POWER (KW)	45	67.5	110	172
		OUTPUT MECH. TORQUE (Nm)	6303.3	9380.3	14695.4	24365.2
		INPUT THERMAL POWER (KW)	39	50	71.6	135
		OUTPUT THERMAL TORQUE (Nm)	5462.6	6948.4	9947.3	19124
30	50	INPUT MECH. POWER (KW)	40	56	92	158
		OUTPUT MECH. TORQUE (Nm)	6494.0	9339.1	14652.2	26556.6
		INPUT THERMAL POWER (KW)	32	45	61.2	121
		OUTPUT THERMAL TORQUE (Nm)	5195.2	7504.65	9761	20337
40	37.5	INPUT MECH. POWER (KW)	34	51	76	119
		OUTPUT MECH. TORQUE (Nm)	7359.9	10830.2	16137.4	26062.6
		INPUT THERMAL POWER (KW)	25	37	48	93
		OUTPUT THERMAL TORQUE (Nm)	5411.7	7857.8	10192.6	20131.4
50	30	INPUT MECH. POWER (KW)	28	44	62	110
		OUTPUT MECH. TORQUE (Nm)	7130.7	11404.1	16457.4	29064
		INPUT THERMAL POWER (KW)	22	31	39.5	81.6
		OUTPUT THERMAL TORQUE (Nm)	5602.7	8740.7	10486.9	21300.32
60	25	INPUT MECH. POWER (KW)	24	37	54.8	78
		OUTPUT MECH. TORQUE (Nm)	7242.7	11092.2	17520.6	25326.6
		INPUT THERMAL POWER (KW)	18	28	33.6	45.2
		OUTPUT THERMAL TORQUE (Nm)	5432.0	8397.4	10702.7	17712.6
70	21.4	INPUT MECH. POWER (KW)	21	32	46	75
		OUTPUT MECH. TORQUE (Nm)	7309.8	11207	16716.2	27445
		INPUT THERMAL POWER (KW)	20	22.5	28.4	57.3
		OUTPUT THERMAL TORQUE (Nm)	6961.7	7880.4	10320.1	20456.6

The Ratings are based on service factor of 1, continuously transmitted for 12 hours/day with normal overload of 100% momentarily for 15 seconds, 40% for 30 minutes, 25% for 2 hours.

See Page No. 9 for actual service factor to nature of load and duration of operation.

Ratios and output speeds are nominal. Exact ratios are listed on Page No. 30

For rating marked * consult ELECON

Higher rating can be obtained by using SYNTHETIC OIL, details on Page No. 32

RATINGS AT INPUT SPEED 1000 R.P.M.

GEAR	OUTPUT SPEED	CAPACITY		SIZE (OF UNIT	
RATIO	R.P.M.	CAFACITI	10.5	12	14	17
5	200	INPUT MECH. POWER (KW)	99.7	152.16	223	*
		OUTPUT MECH. TORQUE (Nm)	4570.2	6835.2	9717.3	*
		INPUT THERMAL POWER (KW)	70	100	154	*
		OUTPUT THERMAL TORQUE (Nm)	3208.8	4449.8	6710	*
7.5	133	INPUT MECH. POWER (KW)	72.4	110	152	*
		OUTPUT MECH. TORQ;UE (Nm)	4927.6	7361.4	9834.5	*
		INPUT THERMAL POWER (KW)	57	80	132	*
		OUTPUT THERMAL TORQUE (Nm)	3879.5	5353.3	8534.7	*
10	100	INPUT MECH. POWER (KW)	51	92	134	268
		OUTPUT MECH. TORQUE (Nm)	4480.9	8187.4	11301.1	24310
		INPUT THERMAL POWER (KW)	49	70	111	160.5
		OUTPUT THERMAL TORQUE (Nm)	4305.1	6229.3	9358.7	14101.53
15	66.7	INPUT MECH. POWER (KW)	45	68	125	220
		OUTPUT MECH. TORQUE (Nm)	5863.2	8882.9	15627.3	28979.3
		INPUT THERMAL POWER (KW)	41	60	96.6	139.3
		OUTPUT THERMAL TORQUE (Nm)	5342.0	7838.2	12076	18349.2
20	50	INPUT MECH. POWER (KW)	42	62	102	209.3
		OUTPUT MECH. TORQUE (Nm)	7139.6	10565.4	16628	35528
		INPUT THERMAL POWER (KW)	33	49	83.5	132
		OUTPUT THERMAL TORQUE (Nm)	5609.7	8358.1	13298.4	21430.2
25	40	INPUT MECH. POWER (KW)	33	53	80	128
		OUTPUT MECH. TORQUE (Nm)	6775.7	11124.5	15921.6	27198
		INPUT THERMAL POWER (KW)	28	40	67	89
		OUTPUT THERMAL TORQUE (Nm)	5749.1	8529.8	13361.22	189114
30	33.4	INPUT MECH. POWER (KW)	30	48	72.7	120
		OUTPUT MECH. TORQUE (Nm)	7399.1	11883.8	17180.7	30973
		INPUT THERMAL POWER (KW)	24	35	58	80
		OUTPUT THERMAL TORQUE (Nm)	5919.3	8665.2	13704.6	20419
40	25	INPUT MECH. POWER (KW)	26	42	60.2	80
		OUTPUT MECH. TORQUE (Nm)	8442.2	13380.8	18953	26281.6
		INPUT THERMAL POWER (KW)	18.5	30.5	36	62
		OUTPUT THERMAL TORQUE (Nm)	6007.0	9714.8	12135	20368.2
50	20	INPUT MECH. POWER (KW)	20.8	36	49	78
		OUTPUT MECH. TORQUE (Nm)	8243.6	13488.7	19280.5	31285.8
		INPUT THERMAL POWER (KW)	16	24	34.5	60
		OUTPUT THERMAL TORQUE (Nm)	6341.2	8986	13737	23779.5
60	16.7	INPUT MECH. POWER (KW)	17.5	30	39	72
		OUTPUT MECH. TORQUE (Nm)	8006.0	13292.5	18600	34174
		INPUT THERMAL POWER (KW)	13	22	25.8	50
		OUTPUT THERMAL TORQUE (Nm)	5947.3	9751.1	12301.7	23446
70	14.3	INPUT MECH. POWER (KW)	14.5	32	34	62
		OUTPUT MECH. TORQUE (Nm)	7262.7	11207	17819.8	33538.5
		INPUT THERMAL POWER (KW)	12	19	21.6	43
		OUTPUT THERMAL TORQUE (Nm)	6010.5	9335.2	12027	23260.6

⁻ The Ratings are based on service factor of 1, continuously transmitted for 12 hours/day with normal overload of 100% momentarily for 15 seconds, 40% for 30 minutes, 25% for 2 hours.
- See Page No. 9 for actual service factor to nature of load and duration of operation.

For rating marked * consult ELECON

See Page No. 9 for actual service factor to nature of load and quantum or operations and output speeds are nominal. Exact ratios are listed on Page No. 30
 Higher rating can be obtained by using SYNTHETIC OIL, details on Page No. 32

ELECON 🕸

RATINGS AT INPUT SPEED 750 R.P.M.

GEAR	OUTPUT	CAPACITY		SIZE (OF UNIT	
RATIO	SPEED R.P.M.	ON NOTE:	10	12	14	17
5	150	INPUT MECH. POWER (KW)	105	146.12	200	*
		OUTPUT MECH. TORQUE (Nm)	6350.7	8884.3	12173.1	*
		INPUT THERMAL POWER (KW)	75	97.5	114	*
		OUTPUT THERMAL TORQUE (Nm)	4536.2	5897.1	6822.5	*
7.5	100	INPUT MECH. POWER (KW)	69.5	96.5	140	*
		OUTPUT MECH. TORQUE (Nm)	6239.1	8755	12827.2	*
		INPUT THERMAL POWER (KW)	50	85.5	130	*
		OUTPUT THERMAL TORQUE (Nm)	4488.5	7757	11794.3	*
10	75	INPUT MECH. POWER (KW)	53	72.6	105	171.16
		OUTPUT MECH. TORQUE (Nm)	6208.8	8689.7	12567.8	20922.6
		INPUT THERMAL POWER (KW)	45	65.3	86.75	137.5
		OUTPUT THERMAL TORQUE (Nm)	5271.6	7816	10272.9	16808
15	50	INPUT MECH. POWER (KW)	45	59	85	137.5
		OUTPUT MECH. TORQUE (Nm)	7735.5	10360.5	15260.9	25212
		INPUT THERMAL POWER (KW)	34	53.13	73	123.2
		OUTPUT THERMAL TORQUE (Nm)	5844.6	9336	13106.4	22590
20	37.5	INPUT MECH. POWER (KW)	38	46.86	62	101.65
		OUTPUT MECH. TORQUE (Nm)	8612.8	10979	14526.2	24074.8
		INPUT THERMAL POWER (KW)	27	42.88	58	88
		OUTPUT THERMAL TORQUE (Nm)	6119.6	10046.5	13441.3	20841.9
25	30	INPUT MECH. POWER (KW)	30	36	57	86.35
		OUTPUT MECH. TORQUE (Nm)	8308.5	10279.6	16512	25563.9
		INPUT THERMAL POWER (KW)	24	32	52	65
		OUTPUT THERMAL TORQUE (Nm)	6646.8	9168	15063.5	19243.3
30	25	INPUT MECH. POWER (KW)	23	33.73	45.11	72
		OUTPUT MECH. TORQUE (Nm)	7204.5	11341	15508.8	14027
		INPUT THERMAL POWER (KW)	21	31.25	41.25	68
		OUTPUT THERMAL TORQUE (Nm)	6578.0	10505	14181.8	23378.4
40	18.8	INPUT MECH. POWER (KW)	20	26.5	41.8	68.53
		OUTPUT MECH. TORQUE (Nm)	8330.9	10996.7	18897.8	30634.4
		INPUT THERMAL POWER (KW)	16	24	33	58
		OUTPUT THERMAL TORQUE (Nm)	6664.7	9997	14919.3	25927.2
50	15	INPUT MECH. POWER (KW)	18	23.2	32	52.05
		OUTPUT MECH. TORQUE (Nm)	8938.8	11225.7	17724.8	28167.7
		INPUT THERMAL POWER (KW)	15	21.45	22	48.75
		OUTPUT THERMAL TORQUE (Nm)	7449.0	10105.9	12185.8	26381.9
60	12.5	INPUT MECH. POWER (KW)	14	18.8	24.2	40.6
		OUTPUT MECH. TORQUE (Nm)	8347.3	10778.1	16085.3	26055.5
		INPUT THERMAL POWER (KW)	11	17	23	36
		OUTPUT THERMAL TORQUE (Nm)	6558.6	9741	15287.6	23103.4
70	10.7	INPUT MECH. POWER (KW)	10	16.5	20.8	34.1
		OUTPUT MECH. TORQUE (Nm)	6693.9	11045	14851.6	24956.7
		INPUT THERMAL POWER (KW)	8	14.8	19.5	32
		OUTPUT THERMAL TORQUE (Nm)	5355.1	9774.9	13923.4	23419

⁻ The Ratings are based on service factor of 1, continuously transmitted for 12 hours/day with normal overload of 100% momentarily for 15 seconds, 40% for 30 minutes, 25% for 2 hours.

For rating marked * consult ELECON

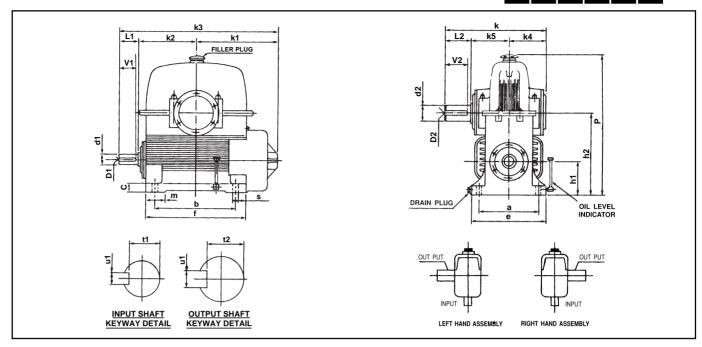
See Page No. 9 for actual service factor to nature of load and duration of operation.
 Ratios and output speeds are nominal. Exact ratios are listed on Page No. 30
 Higher rating can be obtained by using SYNTHETIC OIL, details on Page No. 32

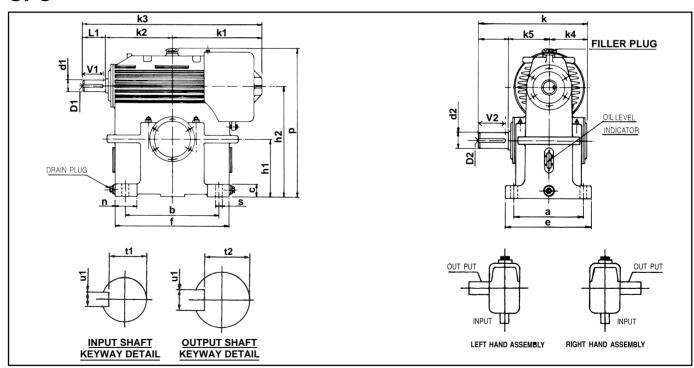
RATINGS AT INPUT SPEED 500 R.P.M.

GEAR	OUTPUT SPEED	CAPACITY		SIZE C	F UNIT	
RATIO	R.P.M.		10	12	14	17
5	100	INPUT MECH. POWER (KW)	75	102.5	122	*
		OUTPUT MECH. TORQUE (Nm)	6732.8	9299.3	11068.5	*
		INPUT THERMAL POWER (KW)	40	49.2	57.5	*
		OUTPUT THERMAL TORQUE (Nm)	3590.8	4463.7	5213.1	*
7.5	66.7	INPUT MECH. POWER (KW)	47	56.6	95	*
		OUTPUT MECH. TORQUE (Nm)	6312.1	7617.7	12785.8	*
		INPUT THERMAL POWER (KW)	35	45.48	50.2	*
		OUTPUT THERMAL TORQUE (Nm)	4700.5	6121.1	6756.3	*
10	50	INPUT MECH. POWER (KW)	40	51.72	70.65	130.8
		OUTPUT MECH. TORQUE (Nm)	7138.3	9187.1	12549.6	23558.8
		INPUT THERMAL POWER (KW)	29	40	49.25	96.72
		OUTPUT THERMAL TORQUE (Nm)	5175.3	7105.2	8748.3	17420.5
15	33.3	INPUT MECH. POWER (KW)	30	42.56	58.8	102.36
		OUTPUT MECH. TORQUE (Nm)	7880.9	10985.1	15345.4	27300.6
		INPUT THERMAL POWER (KW)	24	33.45	37.31	80.6
		OUTPUT THERMAL TORQUE (Nm)	6304.7	8633.7	9737	21497
20	25	INPUT MECH. POWER (KW)	22	35.2	45.6	91.5
		OUTPUT MECH. TORQUE (Nm)	7395.6	11873.2	15677.3	31807.2
		INPUT THERMAL POWER (KW)	20	29.8	34.3	72.76
		OUTPUT THERMAL TORQUE (Nm)	6723.2	10051.7	11792.3	25292.8
25	20	INPUT MECH. POWER (KW)	18	29	41.2	82
		OUTPUT MECH. TORQUE (Nm)	7219.8	11922.7	17312.2	34652.2
		INPUT THERMAL POWER (KW)	15	24.17	30.55	64.5
		OUTPUT THERMAL TORQUE (Nm)	6016.5	9937	12837.1	27257
30	16.6	INPUT MECH. POWER (KW)	16	25.6	33.83	64.37
		OUTPUT MECH. TORQUE (Nm)	7547.9	12371.3	16737.7	32218
		INPUT THERMAL POWER (KW)	14	19	26.6	56.42
		OUTPUT THERMAL TORQUE (Nm)	6604.4	9181.8	13160.6	28239
40	12.5	INPUT MECH. POWER (KW)	15	23.3	31.5	66.7
		OUTPUT MECH. TORQUE (Nm)	8938.8	13884.9	19252.8	42805.4
		INPUT THERMAL POWER (KW)	12	17.2	20.52	47.35
		OUTPUT THERMAL TORQUE (Nm)	7151.0	10249.8	12541.8	30387.3
50	10	INPUT MECH. POWER (KW)	14	18.6	26.6	48
		OUTPUT MECH. TORQUE (Nm)	10027.5	13322.3	20068.4	36672
		INPUT THERMAL POWER (KW)	10	14.16	17.35	37.27
		OUTPUT THERMAL TORQUE (Nm)	7162.5	10142.1	13086.7	28474.3
60	8.33	INPUT MECH. POWER (KW)	10	15.7	20.7	38
		OUTPUT MECH. TORQUE (Nm)	8254.5	13139.6	18036.1	33981
		INPUT THERMAL POWER (KW)	8.5	12.5	15.6	33.25
		OUTPUT THERMAL TORQUE (Nm)	7016.3	10461.4	13532.4	29733.4
70	7.14	INPUT MECH. POWER (KW)	8.8	14.36	16.12	30
		OUTPUT MECH. TORQUE (Nm)	8592.3	13962.5	16170.8	30495.8
		INPUT THERMAL POWER (KW)	6.9	11.5	14.2	28.7
		OUTPUT THERMAL TORQUE (Nm)	6737.2	11228.6	14244.8	29174.3

The Ratings are based on service factor of 1, continuously transmitted for 12 hours/day with normal overload of 100% momentarily for 15 seconds, 40% for 30 minutes, 25% for 2 hours.
 See Page No. 9 for actual service factor to nature of load and duration of operation.

For rating marked * consult ELECON


Ratios and output speeds are nominal. Exact ratios are listed on Page No. 30
 Higher rating can be obtained by using SYNTHETIC OIL, details on Page No. 32


SFU

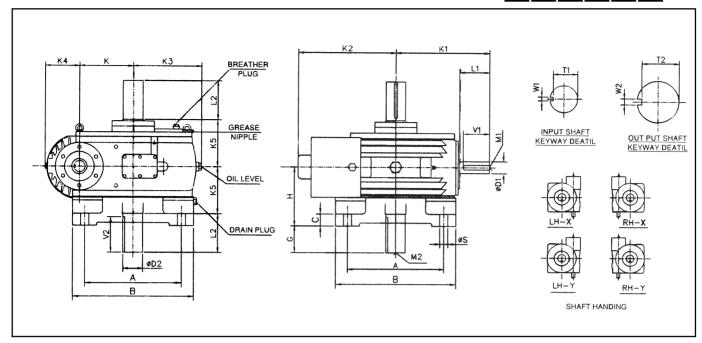
ELECON 🕸

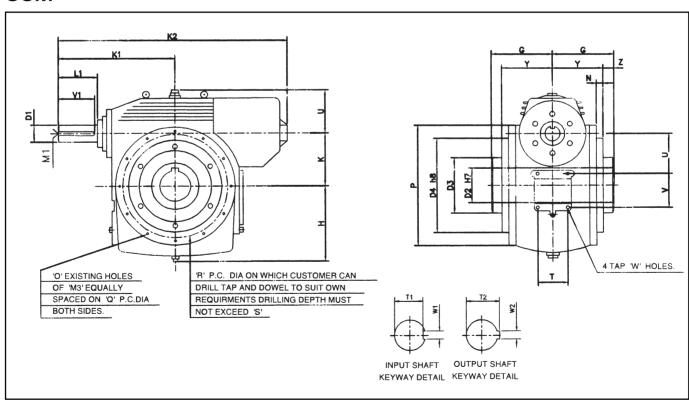
SIZE	G	EARE	BOX I	IOUN	TING	DET	AIL			CLI	EARAN	CE DIM	ENSIC	NS							SHAF	T END	DETA	AILS				
SIZE	а	b	С	е	f	m	s	h1	h2	k	k1	k2	k3	k4	k5	Р	d1	L1	V1	t1	u1	D1	d2	L2	V2	t2	u2	D2
12 SFU	368	521	55	540	690	150	33	190.5	495.3	589	505	360	990	208	216	860	60	125	120	53	18	M20	85	165	160	76	22	M20
14 SFU	432	597	65	560	820	180	33	216	571.6	635	545	450	1135	215	220	970	80	140	135	71	22	M20	110	200	195	100	28	M24
17 SFU	508	762	75	600	920	170	33	254	685.8	825	650	520	1340	300	310	1185	85	170	160	78	22	M20	135	215	210	123	36	M30

SFO

SIZE	G	EARE	BOX I	MOUN	TING	DET	AIL			CLI	EARAN	CE DIM	ENSIC	ONS							SHAF	T END	DET	AILS				
SIZE	а	b	С	е	f	m	s	h1	h2	k	k1	k2	k3	k4	k5	Р	d1	L1	V1	t1	u1	D1	d2	L2	V2	t2	u2	D2
12 SFO	440	530	55	540	630	125	33	330	634.8	589	500	360	985	208	216	819	60	125	120	53	18	M20	85	165	160	76	22	M20
14 SFO	470	620	65	560	770	150	33	395	750.6	738	610	450	1200	258	280	952	80	140	135	71	22	M20	110	200	195	100	28	M24
17 SFO	510	750	75	600	920	170	33	460	891.8	825	650	520	1340	300	310	1146	85	170	160	76	22	M20	135	215	210	123	36	M30

Key & Keyways as per IS 2048. Shaft limits upto 58dia.-k6 and above 58 dia.-m6




SFV

ELECON 🕸

SIZE	Α	В	С	ФЅ	Н	K1	K2	КЗ	К	K4	K5	G	D1	L1	V1	T1	W1	M1	D2	L2	V2	T2	W2	M2
12 SFV	500	620	60	33	280	485	500	350	304.8	175	216	101	60	125	120	53	18	M20	85	165	160	76	22	M20
14 SFV	580	700	65	33	300	590	545	419	355.6	200	220	120	80	140	135	71	22	M20	110	200	195	100	28	M24
17 SFV	800	1000	75	40	345	690	651	520	431.8	238	310	180	85	170	160	76	22	M20	135	215	210	123	36	M30

SSM

SIZE	к	н	U	K1	K2	D1	L1	V1	M1	T1	W1	D2	T2	W2	D3	D4	Р	G	N	Υ	z	0	Q	М3	R	s	Т	U	٧	w
12 SSM	304.8	380	226	485	990	60	125	120	M20	53	18	110	116.4	28	180	360	640	220	10	200	20	12	605	M12	450	25	140	225	175	M24
14 SSM	355.6	450	250	590	1180	80	140	135	M20	71	22	140	148.4	36	185	400	770	240	10	225	15	12	720	M16	530	25	140	226	235	M24

Key & Keyways as per IS 2048. Shaft limits upto 58dia.-k6 and above 58 dia.-m6

ELECON 🕸

K Factor

ACTUAL GEAR RATIO

SIZE OF					N	OMINAL RAT	10				
UNIT	5	7.5	10	15	20	25	30	40	50	60	70
1 ⁵ / ₈	5.25	7.33	10.5	14.5	20	25	30	40	50	60	70
1 3/4	5.20	7.33	9.66	14.5	21	26	29	40	50	60	70
2	5	7.5	9.5	15	19	25	30	40	50	61	70
2 1/4	4.8	7	10.5	14.5	21	24	29	39	50	60	70
3	4.83	7.25	9.67	14.5	20	25	30	40	50	60	70
3.54	4.83	7.25	9.66	14.5	20	25	30	40	50	59	70
4	4.83	7.24	9.67	14.5	19.5	25	30	40	50	60	71
5	4.83	7.25	9.67	14.5	19.5	25	30	40	50	60	71
6	4.86	7.25	9.67	14.5	19.5	25	30	40	50	60	70
7	5.14	7.25	9.67	14.67	19.5	24.5	30	40	50	60	71
8	5.14	7.20	9.75	14.67	19.5	24.5	30	40	50	60	71
9	5.14	7.20	9.75	14.67	19.5	24.5	30	40	50	60	71
10.5	5.14	7.33	9.75	14.67	19.5	24.5	29.5	40	50	60	70
12	4.9	7.43	9.8	14.67	20.5	24.5	29.5	40	50	60	70
14	5.1	7.57	9.8	14.67	20.33	24.5	30.5	39	49	61	69
17	5.1	7.37	9.83	14.75	19.66	25.5	29.5	40	49	60	71

OVERHUNG LOADS:

Where,

Whenever a sprocket, gear, sheave or pulley is mounted on the output shaft, a calculation should be made to determine the overhung load in Newtons on the shaft,

	1014 0550 10		
D	KW x 9550 x K	Sprocket	1.00
Г	= N x R	Spur Pinion	1.25
Р	= equivalent overhung load in Newtons	V-belt Sheave	1.50
KW	= nower carried by shaft in Kilo Watts	Flat Belt Pullev	2.00

Overhung Member

Ν = r.p.m. of the shaft The calculated equivalent overhung load should be compared with the permissible values given in the table.

= pitch radius of sprocket, pinion, sheave or pulley in meter Κ factor

Maximum permissible overhung loads (Newtons) at centre of wheel shaft extention at 1500 r.p.m. Input Speed.

RATIO	BEARING NEAR								SIZE	OF UNI	IT							
IKATIO	SHAFT EXTENTION	1 5/8	1 3/4	2	2 1/4	3	3.54	4	5	6	7	8	9	10.5	12	14	17	
5	STD TRB	3080	3080 3108 4840	4840	4851	4857	4950	10454	12180	13636	15818	15900	16800	19800	22310	34654		
J	STD TRB+CRB	3000	3100	7070	4031	9216	10351	11720	15800	20963	22230	24225	24335	29865	34650	50000		
7.5	STD TRB	3102	3080	4785	4796	5449	6600	11400	15090	16910	18900	19363	20010	22820	27000	40500		
7.5	STD TRB+CRB	3102	3000	4703	4770	9981	10351	13300	17600	24280	23450	26035	27110	33340	36650	54975		
10	STD TRB	3102	3058	4708	4829	6151	7150	11120	16000	17636	19350	22335	22860	26325	32909	49363	55000	
10	STD TRB+CRB	3102	3030	4700	1027	10769	11088	15593	19500	25450	25630	31400	32000	33495	46636	69954	99000	
15	STD TRB	2970	3047	4565	4400	7176	8272	10100	16620	17834	22300	24090	24000	28300	33050	50875	63594	
10	STD TRB+CRB	2770	0017	1000	1100	11924*	13750*	16600*	20110*	26575*	27780*	32800	33000	41000	55120	87089	130633	
20	STD TRB	2893 2915	3 2915 440	2915	4400	4422	7877	9680	10252	15300	18014	23000	23800	26840	27715	33000	52080	65100
20	STD TRB+CRB	2073		1100	1122	12841*	15400*	17481*	22800*	27220*	27980*	34600*	44825*	44815*	57674*	92000*	138000*	
25	STD TRB	2860	2860 3135	4235	4345	8367	9295	10468	15545	18443	22250	24604	28600	28900	32636	65270	78824	
25	STD TRB+CRB	2000	3133	4233	1313	12734*	16375*	17481*	24700*	27280*	29423*	35988*	47300*	48800*	57004*	117068*	151025*	
30	STD TRB	2723	2750	4043	4378	8848	9130	11061	15000	19816	21386	25520	30800	29120	32800	67980	81576	
	STD TRB+CRB	2720	2700	1010	1070	13165*	16500*	17914*	24400*	27468*	32373*	37769*	51150*	51200*	57800*	127545*	172185*	
40	STD TRB	2695	2723	4059	4428	9874	10450	12194	16618	22170	24035	29675	34650	35325	31325	76726	88071	
-10	STD TRB+CRB	2073	2725	4007	1120	14244*	17688*	18990*	25575*	30411*	37769*	41760*	52495*	52015*	63272*	140745*	182968*	
50	STD TRB	2778	2640	4180	4565	10468	10780	13165	17805	24133	25506	31078	36740	33325	32080	83450	100148	
30	STD TRB+CRB	2110	2040 4180	4100	1303	14838*	18832*	20126*	27366*	34335*	39710*	43812*	53000*	53800*	63305*	154935*	185922*	
60	STD TRB	2893	2893 2873 4312	4312	4758	11762	11110	13813	18830	25133	26880	32481	31195	31800	34650	85535	102642	
	STD TRB+CRB	2073	2073	1012	1750	16133*	20075*	20880*	29136*	37572*	42516*	45646*	53120*	54000*	67630*	138050*	179465*	
70	STD TRB	3025	3060	4928	5148	14028	13695	14513	19747	26389	29234	34100	35320	30300	41580	86310	103572	
	STD TRB+CRB	3023	3000	1/20	3170	18345*	20350*	21474*	30269*	38357*	43066*	47696*	54000*	57475*	70950*	143484*	186530*	

SPECIAL HEAT - TREATED SHAFT IS SUPPLIED

TAPER ROLLER BEARING TRB CYLINDRICAL ROLLER BEARING CRB

AVERAGE WEIGHT IN KILOGRAMS

Gear Size	1	⁵ / ₈	1	1/4		2	2	1/4	;	3	3.	54	4	1	į	5	6	3	7	7		8		9	10	.5
GEAR TYPE	NET	GR.	NET	GR.	NET	GR.	NET	GR.	NET	GR.	NET	GR.	NET	GR.	NET	GR.	NET	GR.	NET	GR.	NET	GR.	NET	GR.	NET	GR.
SNU-U	7	8.5	8	10.5	12	23	14	25	32	60	40	65	65	95	95	125	152	190	180	230	220	270	319	385	460	585
SNU-O	7	8.5	8	10.5	12	23	14	25	32	60	40	65	72	102	105	135	165	204	195	265	237	305	336	400	480	600
SNU-V	7.3	9	8.5	11.5	14	24	15	25	37	67	43	68	73	103	105	135	166	205	200	270	250	315	348	430	481	610
SNU-SM	-	-	-	-	15	28	16	28	35	65	41	66	64	80	110	140	157	170	200	270	252	316	330	415	465	590

APPROXIMATE OIL CAPACITY FOR SNU GEAR UNIT IN LITRES

SNU-U		2.5	2.5	4	5	9.5	11	16	21
SNU-O	FILL AND FORGET	3.8	5.1	8	13.5	18	19	41	45
SNU-V		3.5	4.0	5.7	8.5	18	20	25	26

APPROXIMATE OIL CAPACITY FOR SNU-SM GEAR UNIT FOR DIFFERENT MOUNTING POSITIONS IN LITRES

А		4	5	7	10	18	19	41	45
В	FILL AND FORGET	2.5	2.5	4	6	9.5	11	16	21
С		2.5	2.5	4.7	8.8	18	20	25	26
D/E		3	3.5	8	11.6	19	20	25	26

			12	14	17
	Net Weight (kgs.)		580	885	1260
SFU	Gross Weight (kgs.)		900	1140	1700
	Oil Capacity (ltrs.)		25	36	60
	Net Weight (kgs.)		660	940	1380
SFO	Gross Weight (kgs.)		920	1180	1800
	Oil Capacity (ltrs.)		27	38	95
	Net Weight (kgs.)		660	870	1575
SFV	Gross Weight (kgs.)		845	1120	2000
	Oil Capacity (ltrs.)		29	43	106
	Net Weight (kgs.)		780	1280	-
	Gross Weight (kgs.)	Gross Weight (kgs.)		1540	-
SSM		А	24	28	-
	Approx. Oil Capacity in Itrs. For Diff. Mounting Positions	В	22	25	-
		С	26	28	-
			23	30	-

- * Size 1 ⁵/₈ to 3 under 'FILL and FORGET' concept. i.e., Factory filled synthetic lubricant for lifetime lubrication
- * For higher sizes 3.54 to 17 first filling of oil is not supplied with the gear unit.
- First change of oil should be made after 500 hrs. of operation.
- Subsequent oil change must be made after every 3000 hours of operation. The interval should not exceed 12 months.

MINERAL OIL:

RECOMMENDED LUBRICANTS

Brand	Grade
International Brands	
British Petroleum	CS 320 or GR-XP320
Castrol	Alpha Zn 320 or Alpha Sp-320 or Tribol 1100/320 TGQA
Caltex	Meropa 320
Esso Petroleum	Teresso 320 or Spartan 320
Fuchs	Renolin CKC 320
Mobil Oil Co.	Mobil DTE Oil AA or Mobilgear 632
Shell Co.	Vitera Oil 320 or Omela 320
Indian Brands	
Bharat Petroleum	Cabol 320
Balmer Lawrie Fuchs	Renolin CKC 320
Castrol	Alpha Zn 320 or Alpha Sp-320 or Tribol 1100/320 TGQA
Gulf	Gulf harmony 320 or Gulf EP 320
Hindustan Petroleum	Enklo 320 or Parthan EP 320
Indian Oil	Servomesh SP 320 or Servosystem 320
Veedol	Avalon 320

Recommended Grease: For low speed of operations.

Brand	Grade
Castrol	EPL 2
Indian Oil	SERVOGEM EP 2

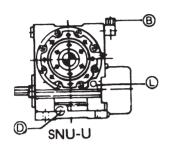
II POLYGLYCOL BASED SYNTHETIC LUBRICANT

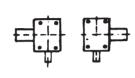
* USE OF POLYGLYCOL BASED SYNTHETIC LUBRICANT IS ALSO ADVISABLE TO IMPROVE THE TRANSMITTING CAPACITY (RATING) OF GEAR UNITS MIN. 20% AS COMPARED WITH USE OF MINERAL OIL AT SAME WORKING TEMPERATURE. THIS GEAR OIL SHOWS EXCELLENT NON-AGEING STABILITY WITH FAVOURABLE INFLUENCE ON EFFICIENCY.

Approved Synthetic Lubricants

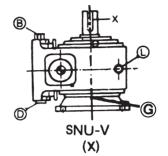
Brand	Grade
Castrol	Tribol 800-220
Fuchs	Renolin PG 220

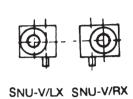
Special Note: Synthetic Lubricants must not be mixed with any other type of oil. The gear unit must be flushed while changing to or from this lubricant.

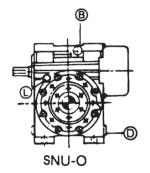


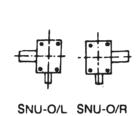

ELECON 送

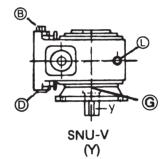
MOUNTING POSITIONS AND SHAFT HANDING:

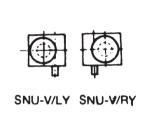

B – Breather plugD – Drain plug

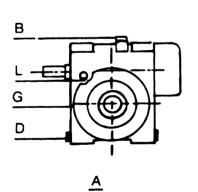

L – Oil Level indicatorG – Grease Nipple

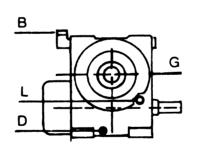


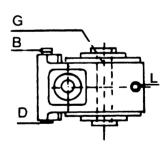



SNU-U/L SNU-U/R

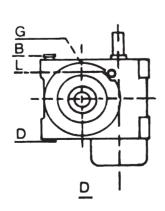


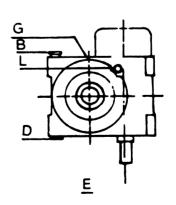






Replace \bigcirc by plug for NU-V(X),V,(Y) in bottom side





В

<u>c</u>

OPTIONAL STANDARD FEATURES

1. SPRAG Holdbacks for Non-reversible Drives

ELECON gear unit can be supplied, fitted with sprag holdback for non-reversible drives it is essential that the load or driven mechanism is prevented from running backwards after the driving motor is stripped e.g. inclined conveyors, elevator, winches etc.

The sprag holdback is incorporated on the fan end side of the high speed shaft. Visually and dimensionally the ELECON unit is unchanged. The hold back can be provided for either direction of rotation and the same should be specified when ordering.

2. Base Frame

Fabricated steel base frames are also supplied when requires.

3. Steel Gearcases

ELECON gear unit can be supplied with cast or fabricated steel cases for heavy duty application when loadings on the housings are in excess of the capacities of standard cast iron cases.

4. Wormwheel construction

Standard worm wheel comprise phosphourous bronze rims continuous welded to cast iron centres, where the duties demand rims are welded to steel centres.

5. Slow speed shafts

ELECON gear unit can be supplied with special slow speed shafts where required, These include units with special single extension, double extended shafts to the standard dimensions listed in this catalogue or special double ended extension. Additionally single or double ended shaft can be supplied in high tensile steel to heavy duty applications.

PRODUCT SAFETY INFORMATION

General ELECON gear units will operate safety provided that they are selected, installed, used

and maintained property. As with any equipment consists of rotating swhafts and transmitting power, adequate guarding is necessary to elimiate the possibility of physi-

cal contact with rotating shafts or coupling.

Potential Hazards The following points should be noted and brought to attention to the persons involved

in the installation, use and maintenance of equipment.

1. For lifting of gearunit eye-bolts or lifting points (on larger units) should be used.

- 2. Check the grade and quantity of lubrication before commissioning. Read and carry out all instructions on lubricant plate and in the installation and maintenance manual literature.
- 3. Installation must be performed in accordance with the manufacturer's instruction and be undertaken by suitably qualified personnel.
- 4. Ensure the proper maintenance of gearboxes in operation. USE ONLY ELECON SPARES FOR GEAR-BOXES.
- 5. The oil level should be examined periodically, if required the oil should be filled again.
- 6. The operating speeds, transmitting powers, generated torques or the external loads must not exceed the design values.
- 7. The driving and the driven equipment must be correctly selected to ensure that the complete installation of the machinery will perform satisfactorily e.g. avoiding system critical speeds, system torsional vibration etc.

Any other required information or clarification can be obtained by writing to:

ELECON ENGINEERING CO. LTD.

POST BOX # 6, VALLABH VIDYANAGAR 388 120, GUJARAT, INDIA

As improvement in designing are continuously being made, the details and dimensions are subject to alteration without notice.

